Самозалечивающийся бетон – инновация в строительстве!

Самовосстанавливающийся бетон как один из трендов строительства в 2020 г.

Многие эксперты отрасли считают, что в ближайшее время мы увидим, как самовосстанавливающийся бетон используется на дорогах, зданиях и домах. Поскольку бетон является наиболее широко производимым и потребляемым материалом в строительной отрасли, эксперты считают, что к 2030 году только в США будет использоваться около 5 миллиардов тонн в год.

Отчасти это связано с городским бумом, который наблюдается в Китае и Индии. По квотам на выбросы Соединенные Штаты составляют лишь 8% от общего объема в этой области.

Исторя самовосстанавливающегося бетона

В 2005 г. были обнаружены бактерии, производящие минералы, которые могут помочь устранить микротрещины в бетоне. Доктор Хенк Джонкерс, микробиолог из Дельфтского университета (Голландия), стал основоположником научных разработок в области производства биоконструкций, которые могут принести пользу для проектов гражданского строительства.

Дмитрий Сорокин берет пробы из российских содовых озер. Бактерии, используемые для разработки самовосстанавливающегося бетона, пришли из высокощелочного природного источника.

Самовосстанавливающийся бетон мог бы решить проблему разрушения бетонных конструкций задолго до окончания срока их службы. Бетон по-прежнему является одним из основных материалов, используемых в строительной отрасли, от фундамента зданий до конструкции мостов и подземных парковок. Традиционный бетон имеет недостаток, он имеет тенденцию трескаться при воздействии напряжения. Целебный агент, который работает, когда бактерии, внедренные в бетон, превращают питательные вещества в известняк, разрабатывается на факультете гражданского строительства и геологии в Дельфте с 2006 года. Этот проект является частью более широкой программы по изучению потенциала самовосстановления пластмасс, полимеров, композитов, асфальта и металлов, а также бетона. Доктор Хенк Джонкерс, микробиолог, специализирующийся на поведении бактерий в окружающей среде, разработал самозаживляющийся бетон в лаборатории и начал полномасштабные испытания на открытом воздухе в 2011 году. Первые самовосстанавливающиеся бетонные изделия стали появляться на рынке в 2013 г. Ожидается, что они увеличат срок службы многих строительных конструкций.

Зачем это нужно?

Крошечные трещины на поверхности бетона делают всю конструкцию уязвимой, потому что вода просачивается внутрь, разрушая бетон и разъедая стальную арматуру, что значительно сокращает срок службы конструкции. Бетон очень хорошо выдерживает сжимающие силы,но не растягивающие. При растяжении он начинает трескаться, поэтому его укрепляют сталью, чтобы выдерживать растягивающие усилия. Сооружения, построенные в условиях высокого уровня воды, такие как подземные подвалы и морские сооружения, особенно уязвимы к коррозии стальной арматуры. Автомобильные мосты также уязвимы, поскольку соли, используемые для удаления льда с дорог, проникают в трещины в конструкциях и могут ускорить коррозию стальной арматуры. Во многих строительных конструкциях растягивающие силы могут привести к образованию трещин, и это может произойти относительно скоро после того, как конструкция будет построена. Ремонт обычных бетонных конструкций обычно включает нанесение бетонного раствора, который приклеивается к поврежденной поверхности. Иногда ступку нужно вставить в существующую конструкцию с помощью металлических штырей, чтобы она не отвалилась. Ремонт может быть особенно трудоемким и дорогостоящим, поскольку зачастую очень трудно получить доступ к сооружению для проведения ремонта, особенно если они находятся под землей или на большой высоте.

Пример сильно поврежденной бетонной опорной балки автомобильного моста. Этот столб подвергся коррозии арматуры из-за попадания антиобледенительных солей через микротрещины, образовавшиеся в бетоне

Как работает биобетон

Специально подобранные виды бактерий рода Bacillus, наряду с кальциевым питательным веществом, известным как лактат кальция, а также азотом и фосфором, добавляются к ингредиентам бетона при его смешивании. Эти самовосстанавливающиеся агенты могут дремать в бетоне до 200 лет.Однако, когда бетонная конструкция повреждена и вода начинает просачиваться через трещины, которые появляются в бетоне, споры бактерий прорастают при контакте с водой и питательными веществами. Активировавшись, бактерии начинают питаться лактатом кальция. По мере того как бактерии питаются кислородом, он расходуется, а растворимый лактат кальция превращается в нерастворимый известняк. Известняк затвердевает на потрескавшейся поверхности, тем самым уплотняя ее. Он имитирует процесс, с помощью которого переломы костей в человеческом теле естественным образом исцеляются клетками остеобластов, которые минерализуются, чтобы переформировать кость. Потребление кислорода при бактериальном превращении лактата кальция в известняк имеет дополнительное преимущество. Кислород является важным элементом в процессе коррозии стали, и когда бактериальная активность израсходовала его полностью, это увеличивает долговечность стальных железобетонных конструкций. Две части самовосстанавливающегося агента (бактериальные споры и питательные вещества на основе лактата кальция) вводятся в бетон в виде отдельных гранул керамзита шириной 2-4 мм, которые гарантируют, что агенты не будут активированы в процессе смешивания цемента. Только когда трещины открывают гранулы и входящая вода приводит лактат кальция в контакт с бактериями, они активируются. Испытания показали, что когда вода просачивается в бетон, бактерии быстро прорастают и размножаются. Они превращают питательные вещества в известняк в течение семи дней в лаборатории. На улице, при более низких температурах, процесс занимает несколько недель. Начальная точка исследования заключалась в том, чтобы найти бактерии, способные выживать в экстремальной щелочной среде. Цемент и вода имеют значение рН до 13, когда смешиваются вместе, обычно это враждебная среда для жизни: большинство организмов погибает в среде со значением рН 10 или выше. Поиск сосредоточился на микробах, которые процветают в щелочных средах, которые можно найти в естественных условиях, таких как щелочные озера в России, богатые карбонатами почвы в пустынных районах Испании и содовые озера в Египте. Образцы эндолитических бактерий (бактерий, которые могут жить внутри камней) были собраны вместе с бактериями, обнаруженными в отложениях озер. Было обнаружено, что штаммы бактерий рода Bacillus процветают в этой высокощелочной среде. Еще в Дельфтском университете бактерии из образцов выращивали в колбе с водой, которая затем использовалась в качестве части водной смеси для бетона. В небольшой бетонный блок были встроены различные виды бактерий. Каждый бетонный блок будет оставлен на два месяца, чтобы его крепко установить. Затем блок измельчали в порошок, а остатки проверяли, выжили ли бактерии. Было обнаружено, что единственной группой бактерий, которые смогли выжить, были те, которые производили споры, сравнимые с семенами растений. Такие споры имеют чрезвычайно толстые клеточные стенки,которые позволяют им оставаться неповрежденными до 200 лет, ожидая лучшей среды для прорастания. Они активизируются, когда бетон начинает трескаться, пища становится доступной, а вода просачивается в структуру. Этот процесс понижает рН высокощелочного бетона до значений в диапазоне (рН от 10 до 11,5), при которых происходит активация бактериальных спор. Поиск подходящего источника пищи для бактерий, которые могли бы выжить в бетоне, занял много времени, и было испробовано много различных питательных веществ, пока не было обнаружено, что лактат кальция является источником углерода, который обеспечивает биомассу. Если он начинает растворяться в процессе смешивания, лактат кальция не влияет на время схватывания бетона.

Читайте также:
Расчёт сечения провода для домашней электросети

До и после. Фотографии поверхности плиты из самовосстанавливающегося бетона. Трещина видна на левом изображении, а справа белый известняк заполнил щель

Первые полномостабные испытания

Полномасштабное тестирование новых бетонных конструкций было начато в Европе в 2011 г. Небольшая структура или часть структуры была создана из самовосстанавливающегося материала и наблюдается в течение нескольких лет. Также определенные конструкции оснащены некоторыми панелями из самовосстанавливающегося бетона, а другие — обычным бетоном, чтобы можно было сравнить поведение этих двух элементов. Можно ли использовать вышеназванные бактерии для ремонта существующих конструкций? Чтобы ответить на этот вопрос, Делфтский университет получил финансирование в размере 420 000 евро от правительства Нидерландов. Два ученых-постдокторанта потратят два года на разработку системы самоисцеления, которая будет применяться к существующим структурам. В ходе исследования тестируются две системы. В первом методе бактерии и питательные вещества нанесены на структуру в виде самовосстанавливающегося раствора, который может быть использован для восстановления крупномасштабных повреждений. Во втором методе бактерии и пищевые питательные вещества растворяются в жидкости, которая распыляется на поверхность бетона, откуда она может просачиваться в трещины. Голландское правительство выделило 450 000 евро на финансирование еще одного исследовательского проекта, который будет проводиться на бетонных подвальных стенах и предварительно отлитых бетонных полах, которые уязвимы для грунтовых вод. Между тем продолжается работа по устранению озабоченности промышленности относительно того, могут ли бактерии выжить в спящем состоянии в течение всего срока службы бетонной конструкции. Данные из образцов почвы, взятых из пустынных районов и хранящихся в музеях, показывают, что почва все еще содержит живые споры бактерий после 200 лет хранения. Для решения других проблем проводятся лабораторные испытания, направленные на ускорение процесса старения самовосстанавливающегося бетона. Испытания будут подвергать бетон экстремальным условиям для имитации смены сезонов и циклов экстремальных температур, более влажных периодов и периодов сушки.

Недостатки самовосстанавливающегося матерала

Есть два ключевых препятствия, которые необходимо преодолеть, если самовосстанавливающийся бетон должен трансформировать бетонное строительство в следующем десятилетии. Первая проблема заключается в том, что глиняные гранулы, содержащие самовосстанавливающийся агент, составляют 20% от объема бетона. Эти 20% обычно состоят из более твердого заполнителя, такого как гравий. Глина намного слабее обычного заполнителя, и это ослабляет бетон на 25% и значительно снижает его прочность на сжатие. Во многих конструкциях это не было бы проблемой, но в специализированных приложениях, где требуется более высокая прочность на сжатие, например в высотных зданиях, она не будет жизнеспособной.

Второй недостаток заключается в том, что стоимость самовосстанавливающегося бетона примерно вдвое превышает стоимость обычного бетона, которая в настоящее время составляет около 80 евро за кубометр. По словам инженеров, при цене около 160 евро за кубический метр самовосстанавливающийся бетон будет жизнеспособным продуктом только для некоторых строительных конструкций, где стоимость бетона намного выше из-за его гораздо более высокого качества, например, для прокладки туннелей и морских сооружений, где безопасность является большим фактором, или в конструкциях, где имеется ограниченный доступ для ремонта и технического обслуживания. В этих случаях увеличение стоимости за счет введения самовосстановляющих средств не должно быть слишком обременительным. Вдобавок к этому, если производить в промышленных масштабах, то считается, что самовосстанавливающийся бетон может значительно снизиться в цене. Если срок службы конструкции можно продлить на 30%, то удвоение стоимости самого бетона все равно сэкономит много денег в долгосрочной перспективе.

Читайте также:
Разновидности дымоходов для твердотопливных котлов

Вы можете оставить сообщение

Поля обязательные для заполнения помечены *.

Самовосстанавливающийся эластичный бетон: виды, преимущества и недостатки

В мире производят миллионы тонн бетона, так как основная масса крупных и мелких сооружений строятся из этого строительного материала. Постоянно растущая потребность в увеличении срока эксплуатационной пригодности сооружений диктует необходимость развивать это направление. Мировая наука поднимает на новый уровень качество стройматериала, используя в его составе природные свойства живых организмов.

Характеристики и назначение нового стройматериала

Самовосстанавливающийся бетон – новая ступень в развитии строительных материалов. Согласно ГОСТ 25192-2012, ГОСТ 7473-2010, ГОСТ Р 57345-2016, ГОСТ Р 57359-2016, в производстве бетона определены: состав, структура, условия твердения и так далее [1-4]. Новый самовосстанавливающийся бетон отличается от классических рецептов добавлением в состав грибков и спор бактерий, способных выжить в щелочных условиях и придать строительному материалу новые свойства. В процессе своей жизнедеятельности бактерии вырабатывают вещества, восстанавливающие поврежденную поверхность бетонной конструкции.

Известный факт, что бетон со временем рассыхается, покрываясь трещинами, в которые проникает вода, а вместе с ней и микроорганизмы, начинающие процесс коррозии. В результате такого разрушения требуется дорогостоящий ремонт бетонного сооружения. Добавленные в состав грибки и споры бактерий могут находиться в состоянии покоя на протяжении десятилетий. Как только конструкция покрывается трещинами, и в них проникает вода, микроорганизмы активизируются и начинают вырабатывать карбонат кальция (известняк), заполняя этим материалом трещины в бетоне. Этот процесс самовосстановления продлевает срок эксплуатации бетонного строения.

Способы получения самовосстанавливающегося бетона с бактериями

Первая строка – контрольный образец; вторая – споры T. reesei; третья – Aspergillus nidulans [8]

Технический университет Делфта, Нидерланды [7]

Микробиолог Хэнк Джонкерс предложил в состав бетона добавлять бактерии рода Bacillus. Бактерии помещены в бетонную смесь в биоразлагаемых капсулах вместе с лактатом кальция. Как только в трещины на поверхности бетона начинает попадать вода, биоразлагаемая капсула растворяется, а бактерии, активизировавшись, начинают вырабатывать известняк, которым заполняются трещины в стройматериале. Лактат кальция используется как питательная среда для бактерий рода Bacillus.

Бингемтонский университет, штат Нью-Йорк и университет Рутгерса [8]

Группа ученых двух университетов добавила в смесь бетона споры грибка Trichoderma reesei [9]. После того, как на поверхности стройматериала начали появляться трещины, вода и воздух спровоцировали грибок активно прорастать, вырабатывая карбонат кальция, которым накрепко замуровались образовавшиеся повреждения.

Иные технологии самовосстановления

Развивая свойства строительных материалов и повышая их экономическую выгоду, в отличие от строительных норм и правил (СНиП 82-02-95, СНиП 82-01-95), регламентирующих расход цемента в производстве бетонных и железобетонных изделий, отечественная и мировая науки пошли дальше утвержденных стандартами правил, применения открытия в биологии и микробиологии [5, 6].

Севастопольский гос. университет

Группа ученых университета разработала технологию нанопорошков с добавлением штаммов бактерий. Добавленный в бетонную смесь ингредиент усиливает бетонный блок при сжатии на 94%. Этот строительный материал предполагается использовать в гидротехническом и берегоукрепительном строительстве.

Университет Мичигана, США [10]

Ученые Инцзы Ян и Виктор Ли, почерпнув идею из природных свойств роста и самовосстановления морских ракушек, добились того, что при длительном контакте самовосстанавливающегося бетона с водой образовавшиеся трещины зарубцовываются, заполняясь карбонатом кальция.

Университет «Виктория», Британская Колумбия

Ученые вывели пластичный цементный композит с применением в составе полимера, что дало бетону возможность выдерживать воздействие колебаний до 12 баллов по шкале Меркалли.

Нитрифицирующие бактерии

Растут бактерии в простых минеральных средах в почве и в водоемах. Специфичные микроорганизмы хорошо развиваются в жидкой среде. Нитрификация – это процесс превращения азотосодержащих соединений в нитриты, а затем в нитраты.

Исследования показывают, что нитрифицирующие бактерии наряду с аммонифицирующими бактериями и грибками участвуют в коррозии бетонных изделий, особенно подземных сооружений, коллекторов и так далее.

Плюсы и минусы самозалечивающегося бетона

Микроскопическая съемка T. ressei с увеличением x1000, показывающая, что споры растут одинаково хорошо как с бетоном, так и без него [8]

Читайте также:
Раковина для ванной комнаты

Разрушительно влияют на бетон влага, перепады температур, воздействие химикатов, коррозия, со временем материалу свойственно рассыхаться.
Самовосстанавливающийся бетон отличается более высокой стойкостью к влиянию внешних разрушающих факторов и обладает свойством самовосстановления.

Области применения

Бетон – прочный строительный материал, обладает необходимыми свойствами для строительства как крупных сооружений (мостов, эстакад, плотин на гидроэлектростанциях и т. д.), так и мелких строительных изделий (бордюров, мачт уличного освещения, железобетонных заборов и т. д.).

Новый самовосстанавливающийся материал необходим в местах, где производство мелких ремонтных работ и регулярный осмотр состояния сооружений невозможен:

  • подземное строительство;
  • подводное строительство;
  • высотные здания;
  • транспортные сооружения мостового типа.

Еще одно преимущество строительных материалов нового поколения – возможность экономии бюджетных средств, так как отсутствует необходимость в постоянном мелком ремонте сооружений. Регулярно выделяемые для этих целей деньги могут быть направлены на строительство новых объектов.

Самовосстанавливающийся бетон (самозалечивающийся эластичный, гибкий)

Самовосстанавливающийся бетон – это общее название разных современных разработок и инновационных решений, призванных изменить структуру материала и сделать его способным к восстановлению, стойкости к различным воздействиям. Ввиду того, что бетон сегодня является одним из наиболее востребованных и популярных материалов в ремонтно-строительной сфере, поиск новых методов производства актуален как никогда.

Каждый год в мире производят до 10 миллиардов тонн бетонного раствора. Несмотря на некоторые недостатки, заменить бетон материалом с такими же преимуществами и техническими характеристиками пока невозможно. Поэтому ученые всего мира постоянно проводят исследования и эксперименты в попытках нивелировать такие минусы бетона, как усадка, вероятность распространения трещин и деформаций, нестойкость ко внешним воздействиям и т.д.

Основное направление современных разработок – поиск самозалечивающегося, гибкого бетона, который будет эффективно противостоять деформациям и сможет восстанавливаться при любых воздействиях.

Виды самовосстанавливающихся бетонов

Современные производители предлагают большой выбор бетонных смесей, но самовосстанавливающиеся растворы пока еще находятся в стадии разработки и активно в строительстве не применяются. Существует несколько видов бетонов, созданных в разных точках мира, которые имеют все шансы стать популярными и частоприменимыми в будущем.

Подробнее о бетонных инновациях

Разработки и работы по созданию гибкого бетона, способного к самовосстановлению, ведутся давно. Так, на базе Бингемтонского университета (штат Нью-Йорк) с помощью ученых университета Рутгерса была создана новая смесь – ее назвали самовосстанавливающимся бетоном. Материал еще известен как грибковый бетон и у него есть потенциал исключить проблемы появления на бетонном монолите трещин.

Ученые выявили интересный момент: взяв гриб Trichoderma reesei, вмешали его в традиционную цементную смесь, потом залили конструкцию и искусственно создали трещины. При обнаружении первой трещины грибок (до того спящий) активизировался. По мере того, как в трещины попадали кислород и вода, споры грибов росли и создавали карбонат кальция, заполняющий и скрепляющий трещины.

Дальнейшие погружения в раствор

Другая группа ученых из Университета Кардиффа (Уэльс) тестировала 3 технологии исцеления бетона: полимерную память формы, использование бактерий и целебных агентов через микрокапсулы, закачку органических/неорганических материалов в структуру материала.

В Британской Колумбии ученые университета «Виктории» (факультета гражданского строительства) объявили про запуск различных экспериментов с волокнами (древесная целлюлоза, зольная пыль). Они могут помочь создать уникальную формулу бетона, способного к самовосстановлению.

В Канаде же создали экологически чистый композит на базе пластично-цементной смеси. Данный строительный материал армирован полимерными волокнами и в ходе испытаний выяснилось, что такой раствор способен выдерживать толчки землетрясения мощностью до 9 баллов по шкале Рихтера.

От современных исследований к древнему Риму

Идея бетона и самого цемента римлянами была не придумана, а заимствована у древних греков. Так, есть пример хорошо сохранившегося водопроводного резервуара в греческом городе Мегара – его конструкции были обмазаны чем-то похожим на цемент. И если изучить этот цемент, можно отыскать особый компонент, который придает крепость и прочность древнеримским зданиям.

Состав греческого цемента включал вулканический пепел – сегодня он называется «пуццолан». Тогда его добывали у холмов города Путеолы (сегодня Поццуоли) возле Везувия, от чего и произошло название вещества. Бетон с вулканическим пеплом в Древнем Риме начали применять со 2 в. до н.э. В смеси вводили пуццолан, известь, пемзу, вулканический туф, камни, песок.

Инновация профессора Ричарда Римана

Профессор Ричард Риман умудрился создать легкий и экологически чистый бетон, которому присущи свойства гидротермального жидкофазного уплотнения. Профессор утверждает, что он смог понизить углеродный след цемента/бетона до 70%, а в итоге даже не исключено поглощение углекислого газа. Но эта технология, как и все современные разработки, требует тщательного изучения, доработки, получения достоверных результатов проверок и т.д.

Читайте также:
Ремонт дома своими руками

Секреты древнеримских технологий

Американские ученые несколько лет тому исследовали древнеримский оpus caementum, сравнивали с составом современного материала и отыскали причину крепости и прочности. В пуццолане содержится большой объем силиката алюминия (в современном бетоне его нет), который при замешивании с морской водой дает горячую химическую реакцию, в ходе которой в структуре раствора появляется минерал алюминий-тоберморит, он и отвечает за повышенную прочность.

Особенно актуально изучение этого химического процесса в морских строениях. Так, созданная по римским технологиям гавань Ирода Великого (Кесария, 1 в. до н.э., включает порт и комплекс защитных сооружений) две тысячи лет омывается постоянно морскими волнами, уходя частично под воду. И реакция с образованием Al-тоберморита в монолите постепенно идет годами, сотнями лет (возможно, и сегодня). Бетон портовых сооружений становится более прочным с каждым днем и неизвестно, сколько еще может простоять в будущем.

Римские строители применяли бетон в разных вариантах, они же стандартизировали состав смеси: нормировали технологии, изучили химический состав, соблюдали нормативы. И прочность бетонного монолита в зданиях, что построены сегодня, рассчитана на 100-120 лет максимум, а римские сооружения стоят уже 2000 лет и переживут еще и современные конструкции.

Самовосстанавливающийся бетон – стройматериал будущего

Главная страница » Самовосстанавливающийся бетон – стройматериал будущего

Бетон стабильно удерживает статус самого распространённого строительного материала. По различным оценкам, ежегодно в мире производится около 10 миллиардов тонн бетонной смеси. Однако популярный строительный материал, будучи в застывшем виде, имеет свойство деформироваться (трескаться) по истечении определённого времени. Поэтому очевидной видится тема: самовосстанавливающийся бетон, связанная с исследованиями, направленными на получение новых видов традиционного стройматериала.

Самовосстанавливающийся бетон – это реально

Учёные многих стран уже продолжительное время рассматривают методы производства самовосстанавливающегося бетона. И вот совсем недавно появились первые обнадёживающие результаты. Согласно этим результатам научных исследований, эксплуатационные свойства популярного стройматериала обещают подняться на совершенно иной уровень.

Подробнее о бетонных инновациях

На базе Бингемтонского университета штата Нью-Йорк, при содействии учёных университета Рутгерса, разработана новая смесь — самовосстанавливающийся бетон. Новый стройматериал, так называемый грибковый бетон, может навсегда освободить общество (и строительную индустрию в частности) от проблем восстановления трещин, неизбежно образующихся на старых строительных конструкциях.

Результат действия грибка Trichoderma reesei: 1,3 — состояние на момент образования трещины; 2,4 — состояние, спустя 100 дней после активации грибка Trichoderma reesei

Группа исследователей, занимающихся изучением новых свойств бетона, выявили интересный момент. Учёные взяли гриб Trichoderma reesei и подмешали в классическую цементную смесь.

Затем произвели из раствора строительную конструкцию и спустя некоторое время, искусственным путём создали на теле конструкции трещины. Удивлению исследователей не было предела, когда обнаружилось, что с появлением первой трещины, спящий до этого момента грибок Trichoderma reesei неожиданно активизировался.

По мере проникновения воды и кислорода внутрь трещин, споры грибов начинают прорастать. В процессе роста образуется карбонат кальция, который непроизвольно заполняет и накрепко мурует трещины.

Дальнейшие погружения в раствор

Проводимые теперь исследования самовосстанавливающегося бетона пока что находятся на ранней стадии активности. Остаются нераскрытыми множество вопросов. В частности, остаётся вопрос — выживет ли грибок Trichoderma reesei в суровых условиях современной эксплуатации бетонных строений.

Капсульная технология восстановления: 1, 2 — металлическая решётка; 3 — место размещения полимерной капсулы с активным веществом — целебным агентом

Тем временем другая группа — ученые Университета Кардиффа, основанного в Уэльсе, протестировали три технологии целевого исцеления:

  1. Полимерную память формы.
  2. Закачку органических и неорганических материалов в структуру бетона.
  3. Использование целебных агентов и бактерий через микрокапсулы.

Ученые факультета гражданского строительства университета «Виктории», что в Британской Колумбии (Канада), объявили о запуске экспериментов с различными волокнами, такими как зольная пыль и древесная целлюлоза.

Древесная целлюлоза и зольная пыль — компоненты инновационного цементного раствора, способные привести к эффекту самовосстановления

По мнению учёных мужей, зольная пыль и древесная целлюлоза могут способствовать созданию уникальной формулы самовосстановления бетона. Развитие свойств самовосстановления бетона — это не единственное направление исследований по строительному материалу. Там же в Канаде, на базе того же университета «Виктории», разработали экологически чистый пластично-цементный композит.

Образец инновационного стройматериала пластично-цементного композита, армированного полимерными волокнами. Перспективный вариант обеспечения строительства в сейсмически опасных районах

Этот стройматериал армирован волокнами на основе полимера. Опытная симуляция экстремальных ситуаций показала, что пластично-цементный композит способен выдерживать землетрясения мощностью до 9,1 балла по шкале Рихтера.

От современных исследований к древнему Риму

Исследователи Массачусетского технологического института уже несколько лет к ряду изучают строение атомов бетона и пытаются экспериментировать.

Участников исследовательской группы не покидает надежда создать стройматериал повышенной долговечности, с минимальным вредным воздействием на окружающую среду.

Читайте также:
Нижнее подключение радиаторов отопления: плюсы и минусы, особенности монтажа, обзор популярных моделей

Теперь специалистами разработана уникальная компьютерная модель, при помощи которой предполагается определять долговечность бетонной структуры.

Инновация профессора Ричарда Римана

Между тем профессор Ричард Риман из университета «Рутгерса», уделяющий высокое внимание инженерным и материаловедческим исследованиям, в 2017 году создал экологически чистый легкий бетон.

Уникальный стройматериал, созданный профессором Ричардом Риманом. Структура, способная сохранять углерод

Материал обладает свойствами гидротермального жидкофазного уплотнения. По словам профессора, тем самым снижается углеродный след цемента и бетона до 70%, а в конечном итоге, не исключается поглощение углекислого газа.

Секреты древнеримских технологий

Отмечено: всё больше учёных обращаются к технологиям Древнего Рима. Секретов в этом направлении масса. Древние римляне строили бетонные сооружения настолько сильные и мощные, что их строения остаются стоять до сего дня.

Некоторые исследования древнего материала указывают на тот факт, что с возрастом структура древнеримского бетона становится только сильнее. Сила древнего бетона исходит от небольших кристаллов структуры стройматериала, которые образуются, если вулканический пепел смешивается с морской водой. Есть повод задуматься.

О технологичных стройматериалах Древнего Рима

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Инновации в строительстве: самоисцеляющийся бетон, генерирующие окна и дорожки

Строительная отрасль развивается семимильными шагам. Постоянно появляются стройматериалы с принципиально новыми свойствами, энергоэффективные технологии, свежие подходы в дизайне. Предлагаем небольшой обзор набирающих ход тенденций.
1. Самовосстанавливающийся бетон

Цемент – это не только один из наиболее часто использующихся материалов в строительстве, но и один из крупнейших “поставщиков” углекислого газа, на который приходится порядка 7% от ежегодных вредных выбросов в атмосферу. При этом конструкции, выполненные на основе цемента, подвержены растрескиванию. Это явление входит в число основных проблем при строительстве. Трещины появляются под воздействием воды и химических реакций. Исследователи из университета Бата в Великобритании создали и успешно развивают технологию под названием “самовосстанавливающийся бетон”, используя смеси, содержащие специальные бактерии, которые находятся внутри особых микрокапсул. Эти микрокапсулы “прорастают”, когда вода попадает в бетонные трещины, и способствуют образованию известняка. Таким образом, создается барьер на пути образования коррозии на стальной арматуре внутри железобетонных конструкций.
2. Тепловое преодоление

Одной из главных проблем современного строительства остается термоизоляция зданий. Строительная отрасль все более нуждается в эффективных теплоизоляционных материалах. Чаще всего тепловые потери происходят через так называемые мостики холода или тепловые мостики. Эти явления возникают как в каменных домах, так и в тех, что сделаны из деревянного бруса или газобетона. В настоящее время в строительство пришли разработки из аэрокосмической отрасли. Аэрогель – субстанция, разработанная НАСА для криогенной изоляции, считается одним из наиболее эффективных теплоизоляционных материалов. Американская компания Thermablok адаптировала эту технологию посредством использование аэрогеля в матрицах из стекловолокна. Такая инновация может быть использована для изоляции каркаса дома. Это позволит более чем на 40% увеличить общий коэффициент термоизоляции здания, сократив теплопотери.

3. Фотоэлектрическое стекло

Остекление зданий комплексными фотоэлектрическими модулями может помочь им генерировать свою собственную электроэнергию даже в странах умеренного климата с небольшим количеством солнечных дней. Такие компании, как Polysolar, занимаются производством прозрачного фотоэлектрического стекла как структурного строительного материала, из которого затем создаются окна, фасады и крыши.

Панели из такого стекла энергоэффективны даже для ориентированных на север вертикальных поверхностей. При этом панели от Polysolar характеризуются повышенным коэффициентом полезного действия, что отражается в конечном итоге на счетах за электричество. А сама стоимость фотоэлектрического стекла лишь немногим превышает стоимость обычного. И хотя расходы на производство и установку каркаса и самой конструкции остаются, затраты на облицовку или затенение перестают быть актуальными.

.

4. Энергия от ходьбы. Выработка электроэнергии при ходьбе – еще одна активно развивающаяся технология. Компания Pavegen создала инновационную разработку, которая, при помощи специального настила, может вырабатывать электроэнергию от движения проходящих по настилу людей. Эта инновационная разработка может быть использована как в помещениях, так и на улицах с высокой интенсивностью движения. Выработка энергии от движения пешеходов происходит путем специальной технологии, использующей пьезоэлектрический эффект и электромагнитную индукцию.А также с помощью маховиковой энергоаккумулирующей системы. Предполагается, что новинку станут применять в транспортных узлах и в других местах, где существуют большие потоки людей. На сегодняшний день самый крупный проект компании реализован на стадионе в Рио-де-Жанейро: выработанная толпами болельщиков энергия приводит в действие прожекторы, установленные по периметру поля. Параллельно компания Pavegen в тестовом режиме применяет свой “настил” в лондонском районе Кэнари Уорф, где с помощью него вырабатывается энергия для уличного освещения.

Читайте также:
Самодельный котел длительного горения на дровах: конструкция и руководство по изготовлению

5. Генерирующие дороги.Итальянский стартап Underground Power исследует потенциал преобразования кинетической энергии движущихся транспортных средств в электрическую на дорогах. Ученые создали разработку под названием Lybra, представляющую собой резиновое покрытие, сходное с материалом для изготовления автомобильных шин, которое способно генерировать электрический ток. Созданная в Политехническом университете Милана, Lybra собирает энергию, образующуюся при торможении автомобиля и далее конвертирует ее в электрическую. Которая затем поступает в электросеть. Особо отметим, что Lybra не только генерирует энергию, но и повышает безопасность дорожного движения, а также обеспечивает устойчивость транспортных потоков.

Самовосстанавливающийся эластичный бетон: виды, преимущества и недостатки

Характеристики и назначение нового стройматериала

Самовосстанавливающийся бетон – новая ступень в развитии строительных материалов. Согласно ГОСТ 25192-2012, ГОСТ 7473-2010, ГОСТ Р 57345-2016, ГОСТ Р 57359-2016, в производстве бетона определены: состав, структура, условия твердения и так далее [1-4]. Новый самовосстанавливающийся бетон отличается от классических рецептов добавлением в состав грибков и спор бактерий, способных выжить в щелочных условиях и придать строительному материалу новые свойства. В процессе своей жизнедеятельности бактерии вырабатывают вещества, восстанавливающие поврежденную поверхность бетонной конструкции.

Известный факт, что бетон со временем рассыхается, покрываясь трещинами, в которые проникает вода, а вместе с ней и микроорганизмы, начинающие процесс коррозии. В результате такого разрушения требуется дорогостоящий ремонт бетонного сооружения. Добавленные в состав грибки и споры бактерий могут находиться в состоянии покоя на протяжении десятилетий. Как только конструкция покрывается трещинами, и в них проникает вода, микроорганизмы активизируются и начинают вырабатывать карбонат кальция (известняк), заполняя этим материалом трещины в бетоне. Этот процесс самовосстановления продлевает срок эксплуатации бетонного строения.

Самовосстанавливающийся бетон

На ремонт бетонных конструкций ежегодно тратят миллиарды долларов, поэтому самовосстанавливающийся бетон – новая ступень в развитии строительных материалов.

Основой большинства способов получения самовосстанавливающегося бетона является добавление в состав грибков и спор бактерий, способных выжить в щелочных условиях и придать строительному материалу новые свойства.

Самовосстанавливающийся бетон необходим в местах, где производство мелких ремонтных работ и регулярный осмотр состояния сооружений невозможен или затруднен:

– подземное строительство; – подводное строительство; – высотные здания; – транспортные сооружения мостового типа.

Подробнее о самовосстанавливающимся бетоне читайте в статье «Как получают самовосстанавливающийся бетон и зачем он нужен»

Способы получения самовосстанавливающегося бетона с бактериями

Первая строка – контрольный образец; вторая – споры T. reesei; третья – Aspergillus nidulans [8]
Применяется несколько способов получения самовосстанавливающегося бетона:
Технический университет Делфта, Нидерланды [7]

Микробиолог Хэнк Джонкерс предложил в состав бетона добавлять бактерии рода Bacillus. Бактерии помещены в бетонную смесь в биоразлагаемых капсулах вместе с лактатом кальция. Как только в трещины на поверхности бетона начинает попадать вода, биоразлагаемая капсула растворяется, а бактерии, активизировавшись, начинают вырабатывать известняк, которым заполняются трещины в стройматериале. Лактат кальция используется как питательная среда для бактерий рода Bacillus.

Бингемтонский университет, штат Нью-Йорк и университет Рутгерса [8]

Группа ученых двух университетов добавила в смесь бетона споры грибка Trichoderma reesei [9]. После того, как на поверхности стройматериала начали появляться трещины, вода и воздух спровоцировали грибок активно прорастать, вырабатывая карбонат кальция, которым накрепко замуровались образовавшиеся повреждения.

Иные технологии самовосстановления

Развивая свойства строительных материалов и повышая их экономическую выгоду, в отличие от строительных норм и правил (СНиП 82-02-95, СНиП 82-01-95), регламентирующих расход цемента в производстве бетонных и железобетонных изделий, отечественная и мировая науки пошли дальше утвержденных стандартами правил, применения открытия в биологии и микробиологии [5, 6].

Севастопольский гос. университет

Группа ученых университета разработала технологию нанопорошков с добавлением штаммов бактерий. Добавленный в бетонную смесь ингредиент усиливает бетонный блок при сжатии на 94%. Этот строительный материал предполагается использовать в гидротехническом и берегоукрепительном строительстве.

Университет Мичигана, США [10]

Ученые Инцзы Ян и Виктор Ли, почерпнув идею из природных свойств роста и самовосстановления морских ракушек, добились того, что при длительном контакте самовосстанавливающегося бетона с водой образовавшиеся трещины зарубцовываются, заполняясь карбонатом кальция.

Университет «Виктория», Британская Колумбия

Ученые вывели пластичный цементный композит с применением в составе полимера, что дало бетону возможность выдерживать воздействие колебаний до 12 баллов по шкале Меркалли.

Нитрифицирующие бактерии

Растут бактерии в простых минеральных средах в почве и в водоемах. Специфичные микроорганизмы хорошо развиваются в жидкой среде. Нитрификация – это процесс превращения азотосодержащих соединений в нитриты, а затем в нитраты.

Исследования показывают, что нитрифицирующие бактерии наряду с аммонифицирующими бактериями и грибками участвуют в коррозии бетонных изделий, особенно подземных сооружений, коллекторов и так далее.

Самовосстанавливающийся бетон (самозалечивающийся эластичный, гибкий)

Самовосстанавливающийся бетон – это общее название разных современных разработок и инновационных решений, призванных изменить структуру материала и сделать его способным к восстановлению, стойкости к различным воздействиям. Ввиду того, что бетон сегодня является одним из наиболее востребованных и популярных материалов в ремонтно-строительной сфере, поиск новых методов производства актуален как никогда.

Читайте также:
Расчет лестницы на второй этаж с поворотом

Каждый год в мире производят до 10 миллиардов тонн бетонного раствора. Несмотря на некоторые недостатки, заменить бетон материалом с такими же преимуществами и техническими характеристиками пока невозможно. Поэтому ученые всего мира постоянно проводят исследования и эксперименты в попытках нивелировать такие минусы бетона, как усадка, вероятность распространения трещин и деформаций, нестойкость ко внешним воздействиям и т.д.

Основное направление современных разработок – поиск самозалечивающегося, гибкого бетона, который будет эффективно противостоять деформациям и сможет восстанавливаться при любых воздействиях.

Виды самовосстанавливающихся бетонов

Современные производители предлагают большой выбор бетонных смесей, но самовосстанавливающиеся растворы пока еще находятся в стадии разработки и активно в строительстве не применяются. Существует несколько видов бетонов, созданных в разных точках мира, которые имеют все шансы стать популярными и частоприменимыми в будущем.

Какие виды самовосстанавливающихся бетонов бывают:

  1. Полимерные заплатки – это специальное покрытие на бетонные монолиты, которое состоит из полимерных капсул. Разработка ученых из Южной Кореи (университет Юнсэй). Принцип работы материала: поверхность бетонного монолита покрывают веществом с микрокапсулами с полимером, а когда появляются трещины, капсулы раскрываются и углубления заполняются жидкими полимерами, под ультрафиолетом полимер застывает и полностью восстанавливает прочность бетона.
    Работы еще идут, результаты впечатляют, но полимерное покрытие сохраняет целостность в течение всего одного года.
  2. Бактерии-реставраторы – это самозалечивающийся эластичный бетон, созданный учеными из Нидерландов (Хенк Йонкерс и Эрик Шланген). Работают бактерии рода Bacillus, принцип таков: в бетон добавили гранулы биоразлагающегося пластика с лактатом кальция и спорами бактерий (которые едят его).
    Споры много лет сохраняют жизнеспособность, не меняют свойства бетона (пока в гранулах), когда появляются трещины, поступающая влага растворяет гранулы, оказывается внутри, бактерии просыпаются, кушают лактат кальция и выделяют кальцит (известняк), который заполняет пустоты, скрепляя края трещин. В условиях лаборатории бактерии успешно заживляли трещины до 0.5 миллиметров, дальше будут испытывать в реальных условиях и искать методы понижения стоимости материала (в среднем он стоит на 50% больше, чем обычный цемент).
  3. Гибкий бетон ConFlexPave – создан в Сингапуре, демонстрирует прочность на уровне стальной арматуры и гибкость в 2 раза выше обычного материала. Эластичный бетон в составе имеет полимерное микроволокно, которое придает гибкость монолиту и усиливает адгезию его с покрываемой поверхностью. Композитный материал прочнее и легче, что особенно актуально в дорожном строительстве, возведении высоток.
    Первые типы гибких бетонов получили несколько десятилетий тому, они работают на скольжении материалов (в то время, как обычная смесь предполагает твердение компонентов и потерю эластичности), в связи с чем способствующие разрушениям деформации отсутствуют. Но стоит материал в 3 раза выше обычного.

Подробнее о бетонных инновациях

Разработки и работы по созданию гибкого бетона, способного к самовосстановлению, ведутся давно. Так, на базе Бингемтонского университета (штат Нью-Йорк) с помощью ученых университета Рутгерса была создана новая смесь – ее назвали самовосстанавливающимся бетоном. Материал еще известен как грибковый бетон и у него есть потенциал исключить проблемы появления на бетонном монолите трещин.

Ученые выявили интересный момент: взяв гриб Trichoderma reesei, вмешали его в традиционную цементную смесь, потом залили конструкцию и искусственно создали трещины. При обнаружении первой трещины грибок (до того спящий) активизировался. По мере того, как в трещины попадали кислород и вода, споры грибов росли и создавали карбонат кальция, заполняющий и скрепляющий трещины.

Дальнейшие погружения в раствор

Другая группа ученых из Университета Кардиффа (Уэльс) тестировала 3 технологии исцеления бетона: полимерную память формы, использование бактерий и целебных агентов через микрокапсулы, закачку органических/неорганических материалов в структуру материала.

В Британской Колумбии ученые университета «Виктории» (факультета гражданского строительства) объявили про запуск различных экспериментов с волокнами (древесная целлюлоза, зольная пыль). Они могут помочь создать уникальную формулу бетона, способного к самовосстановлению.

В Канаде же создали экологически чистый композит на базе пластично-цементной смеси. Данный строительный материал армирован полимерными волокнами и в ходе испытаний выяснилось, что такой раствор способен выдерживать толчки землетрясения мощностью до 9 баллов по шкале Рихтера.

От современных исследований к древнему Риму

Идея бетона и самого цемента римлянами была не придумана, а заимствована у древних греков. Так, есть пример хорошо сохранившегося водопроводного резервуара в греческом городе Мегара – его конструкции были обмазаны чем-то похожим на цемент. И если изучить этот цемент, можно отыскать особый компонент, который придает крепость и прочность древнеримским зданиям.

Читайте также:
Походная баня своими руками – на природе с комфортом

Состав греческого цемента включал вулканический пепел – сегодня он называется «пуццолан». Тогда его добывали у холмов города Путеолы (сегодня Поццуоли) возле Везувия, от чего и произошло название вещества. Бетон с вулканическим пеплом в Древнем Риме начали применять со 2 в. до н.э. В смеси вводили пуццолан, известь, пемзу, вулканический туф, камни, песок.

Инновация профессора Ричарда Римана

Профессор Ричард Риман умудрился создать легкий и экологически чистый бетон, которому присущи свойства гидротермального жидкофазного уплотнения. Профессор утверждает, что он смог понизить углеродный след цемента/бетона до 70%, а в итоге даже не исключено поглощение углекислого газа. Но эта технология, как и все современные разработки, требует тщательного изучения, доработки, получения достоверных результатов проверок и т.д.

Секреты древнеримских технологий

Американские ученые несколько лет тому исследовали древнеримский оpus caementum, сравнивали с составом современного материала и отыскали причину крепости и прочности. В пуццолане содержится большой объем силиката алюминия (в современном бетоне его нет), который при замешивании с морской водой дает горячую химическую реакцию, в ходе которой в структуре раствора появляется минерал алюминий-тоберморит, он и отвечает за повышенную прочность.

Особенно актуально изучение этого химического процесса в морских строениях. Так, созданная по римским технологиям гавань Ирода Великого (Кесария, 1 в. до н.э., включает порт и комплекс защитных сооружений) две тысячи лет омывается постоянно морскими волнами, уходя частично под воду. И реакция с образованием Al-тоберморита в монолите постепенно идет годами, сотнями лет (возможно, и сегодня). Бетон портовых сооружений становится более прочным с каждым днем и неизвестно, сколько еще может простоять в будущем.

Римские строители применяли бетон в разных вариантах, они же стандартизировали состав смеси: нормировали технологии, изучили химический состав, соблюдали нормативы. И прочность бетонного монолита в зданиях, что построены сегодня, рассчитана на 100-120 лет максимум, а римские сооружения стоят уже 2000 лет и переживут еще и современные конструкции.

Самовосстанавливающийся бетон (самозалечивающийся эластичный, гибкий) Ссылка на основную публикацию

Плюсы и минусы самозалечивающегося бетона

Микроскопическая съемка T. ressei с увеличением x1000, показывающая, что споры растут одинаково хорошо как с бетоном, так и без него [8]
Бетон — строительный материал, который в жидком состоянии обладает текучестью воды, что даёт возможность заливать цементный раствор в любые формы и ниши. В затвердевшем же состоянии бетон обладает твердостью камня, что делает его незаменимым в строительстве крупных объектов (мосты, высотные здания, плотины и так далее).
Разрушительно влияют на бетон влага, перепады температур, воздействие химикатов, коррозия, со временем материалу свойственно рассыхаться. Самовосстанавливающийся бетон отличается более высокой стойкостью к влиянию внешних разрушающих факторов и обладает свойством самовосстановления.

Самовосстанавливающийся эластичный бетон: виды, преимущества и недостатки

Каждый год в мире производят до 10 миллиардов тонн бетонного раствора. Несмотря на некоторые недостатки, заменить бетон материалом с такими же преимуществами и техническими характеристиками пока невозможно. Поэтому ученые всего мира постоянно проводят исследования и эксперименты в попытках нивелировать такие минусы бетона, как усадка, вероятность распространения трещин и деформаций, нестойкость ко внешним воздействиям и т.д.

Основное направление современных разработок – поиск самозалечивающегося, гибкого бетона, который будет эффективно противостоять деформациям и сможет восстанавливаться при любых воздействиях.

Характеристики и назначение нового стройматериала

Самовосстанавливающийся бетон – новая ступень в развитии строительных материалов. Согласно ГОСТ 25192-2012, ГОСТ 7473-2010, ГОСТ Р 57345-2016, ГОСТ Р 57359-2016, в производстве бетона определены: состав, структура, условия твердения и так далее [1-4]. Новый самовосстанавливающийся бетон отличается от классических рецептов добавлением в состав грибков и спор бактерий, способных выжить в щелочных условиях и придать строительному материалу новые свойства. В процессе своей жизнедеятельности бактерии вырабатывают вещества, восстанавливающие поврежденную поверхность бетонной конструкции.

Известный факт, что бетон со временем рассыхается, покрываясь трещинами, в которые проникает вода, а вместе с ней и микроорганизмы, начинающие процесс коррозии. В результате такого разрушения требуется дорогостоящий ремонт бетонного сооружения. Добавленные в состав грибки и споры бактерий могут находиться в состоянии покоя на протяжении десятилетий. Как только конструкция покрывается трещинами, и в них проникает вода, микроорганизмы активизируются и начинают вырабатывать карбонат кальция (известняк), заполняя этим материалом трещины в бетоне. Этот процесс самовосстановления продлевает срок эксплуатации бетонного строения.

Будущее биологического бетона

Совершенствованию современных технологий в сфере строительства мы чаще всего обязаны именно изысканиям учёных, которые берутся за изучение таких вопросов. Они на практике позволяют совместить науку и бытовую область жизни, давая нам всем возможность идти в будущее с инновациями.

Применение такого строительного элемента как биобетон очень практично. Давайте только представим, что этот первый шажок в области самозалечивающихся материалов уже не фантазия писателей-фантастов, а реальность.

Читайте также:
Расшифровка маркировки и применение провода ПУГНП

Как можно использовать в дальнейшем такое изделие? Как угодно: строительство бетонных конструкций больше не будет под угрозой разрушения из-за трещин. Бетон используется в сооружении мостов и зданий разного типа, и забыть о ремонте таких конструкций будет выгодно во всех отношениях.

Можно будет не переживать о сохранности саркофагов над реакторами, над местом хранения ядерных отходов и химикатов. Увеличившаяся прочность материала ввиду его возможного самовосстановления открывает широкие горизонты для безопасного и экономичного строительства и на суше, и под водой.

Способы получения самовосстанавливающегося бетона с бактериями

Первая строка – контрольный образец; вторая – споры T. reesei; третья – Aspergillus nidulans [8]
Применяется несколько способов получения самовосстанавливающегося бетона:
Технический университет Делфта, Нидерланды [7]

Микробиолог Хэнк Джонкерс предложил в состав бетона добавлять бактерии рода Bacillus. Бактерии помещены в бетонную смесь в биоразлагаемых капсулах вместе с лактатом кальция. Как только в трещины на поверхности бетона начинает попадать вода, биоразлагаемая капсула растворяется, а бактерии, активизировавшись, начинают вырабатывать известняк, которым заполняются трещины в стройматериале. Лактат кальция используется как питательная среда для бактерий рода Bacillus.

Бингемтонский университет, штат Нью-Йорк и университет Рутгерса [8]

Группа ученых двух университетов добавила в смесь бетона споры грибка Trichoderma reesei [9]. После того, как на поверхности стройматериала начали появляться трещины, вода и воздух спровоцировали грибок активно прорастать, вырабатывая карбонат кальция, которым накрепко замуровались образовавшиеся повреждения.

Иные технологии самовосстановления

Развивая свойства строительных материалов и повышая их экономическую выгоду, в отличие от строительных норм и правил (СНиП 82-02-95, СНиП 82-01-95), регламентирующих расход цемента в производстве бетонных и железобетонных изделий, отечественная и мировая науки пошли дальше утвержденных стандартами правил, применения открытия в биологии и микробиологии [5, 6].

Севастопольский гос. университет

Группа ученых университета разработала технологию нанопорошков с добавлением штаммов бактерий. Добавленный в бетонную смесь ингредиент усиливает бетонный блок при сжатии на 94%. Этот строительный материал предполагается использовать в гидротехническом и берегоукрепительном строительстве.

Университет Мичигана, США [10]

Ученые Инцзы Ян и Виктор Ли, почерпнув идею из природных свойств роста и самовосстановления морских ракушек, добились того, что при длительном контакте самовосстанавливающегося бетона с водой образовавшиеся трещины зарубцовываются, заполняясь карбонатом кальция.

Университет «Виктория», Британская Колумбия

Ученые вывели пластичный цементный композит с применением в составе полимера, что дало бетону возможность выдерживать воздействие колебаний до 12 баллов по шкале Меркалли.

Нитрифицирующие бактерии

Растут бактерии в простых минеральных средах в почве и в водоемах. Специфичные микроорганизмы хорошо развиваются в жидкой среде. Нитрификация – это процесс превращения азотосодержащих соединений в нитриты, а затем в нитраты.

Исследования показывают, что нитрифицирующие бактерии наряду с аммонифицирующими бактериями и грибками участвуют в коррозии бетонных изделий, особенно подземных сооружений, коллекторов и так далее.

Специальные добавки в бетоне

Есть разные типы модификаторов, которые делают лучше параметры эластичных растворов бетона, а конкретно:

  1. Пластификатор – улучшается прочность и упругость покрытий из бетона. Масса смеси становится меньше, поэтому и нагрузка на конструкцию становится меньше. Также водонепроницаемость становится лучше.
  2. Добавки от защиты мороза – бетон быстрее твердеет, поэтому состав не промерзает, если температура невысокая. Свободная жидкость не замерзает с помощью таких компонентов, а испаряется, поэтому покрытие не портится.
  3. Замедлители – с ними раствор схватывается быстрее, удобно использовать при долгой перевозке.
  4. Ускорители – действую наоборот, отлично влияют на уровень прочности блоков из бетона.

Использование нескольких компонентов делает работу легче и ускоряет процесс проведения работ.

Плюсы и минусы самозалечивающегося бетона

Микроскопическая съемка T. ressei с увеличением x1000, показывающая, что споры растут одинаково хорошо как с бетоном, так и без него [8]
Бетон — строительный материал, который в жидком состоянии обладает текучестью воды, что даёт возможность заливать цементный раствор в любые формы и ниши. В затвердевшем же состоянии бетон обладает твердостью камня, что делает его незаменимым в строительстве крупных объектов (мосты, высотные здания, плотины и так далее).
Разрушительно влияют на бетон влага, перепады температур, воздействие химикатов, коррозия, со временем материалу свойственно рассыхаться. Самовосстанавливающийся бетон отличается более высокой стойкостью к влиянию внешних разрушающих факторов и обладает свойством самовосстановления.

Недостатки материала

Даже шаг в будущее не спасает от недостатков материала. Бетонный раствор не исключение. Трещины будут появляться всё равно, время неумолимо. А стоит только попасть влаге на металлическую арматуру, как скорость разрушения увеличится в разы. Потеря первоначальной прочности всегда опасна.

Но что можно сказать о минусах самовосстаналивающегося бетона? Пока рано делать далеко идущие выводы, так как исследования ещё продолжаются. Вероятно, в скором времени результаты будут опубликованы на официальном уровне и материал начнёт своё широкое применение в сфере строительства.

Читайте также:
Покраска фанеры акриловой краской, эмалью внутри дома и на улице от влаги

Светящийся бетон

Доктор Хосе Карлос Рубио из мексиканского университета UMSNH создал цемент, из которого можно изготавливать светящийся бетон. Бетон с фотолюминесценцией может накапливать энергию Солнца днём, а затем отдавать её ночью в течение 12 часов. Изобретатель утверждает, что прочности такого бетона хватит на 100 лет использования.

Если полученный Рубио цемент пройдёт необходимые проверки, то изготовленные из него стены, здания и даже дороги (в тех климатах, которые это позволяют) способны будут накапливать световую энергию в течение дня, а затем светиться ночью, экономя таким образом огромное количество электроэнергии.

Рубио утверждает, что в отличие от фотолюминесцентных пластиков, которые разлагаются от ультрафиолета, его цемент солнцеустойчивый и может служить целых сто лет. Он уже получил материал двух цветов, голубого и зелёного. Кроме всего прочего, максимальную яркость материала можно контролировать при его изготовлении – чтобы, например, светящаяся дорога не слепила водителей.

Изобретатель запатентовал свой цемент в Мексике. Изобретением уже заинтересовались в фонде Ньютона, основанном Королевской инженерной академией наук Великобритании. Проект проходит стадию коммерциализации.

Характеристики эластичного бетона

Улучшения характеристик бетона можно добиться введением в бетонные смеси модификационных веществ. В России разработана и применяется для улучшения качественных характеристик бетона добавка «Эластобетон».

Ее использование сертифицировано ГОСТ ISO 9001-2011 (ISO 9001:2008) [3].

Эта модификационная добавка служит для придания бетонам эластичных свойств, а также для получения требуемых характеристик: увеличения прочности, морозостойкости, ускорение набора прочности, самовыравнивания бетонных поверхностей.

  • Возможность уменьшения толщины бетонной стяжки, что экономит расход материалов и уменьшает вес бетонного покрытия.
  • Добавление компонента увеличивает прочность материала к деформационному воздействию, повышает износостойкость поверхности покрытия.
  • При вводе морозостойкой добавки можно укладывать при отрицательных температурах до –5 градусов без опасности потери качеств из-за замерзания смеси.

Общие достоинства и недостатки гибких бетонов

  • прочнее и долговечнее обычных бетонов;
  • имеет способность самовосстановления;
  • гнется как металл;
  • высокая устойчивость к растрескиванию.
  • высокая себестоимость;
  • может иметь меньшую прочность на сжатие, чем обычный бетон;
  • качество композита зависит от используемых материалов и условий их изготовления.

Области применения

Применяются добавки при изготовлении бетонных и мозаичных полов объектов, подверженных различным механическим нагрузкам: склады и цеха, магазины, гаражные комплексы.

Сингапурские разработки гибкого бетона

Ученые из Наньянского технического института в своих лабораториях сделали новейший материал для строительства.

Они создали и уже провели тесты по новому современному раствору эластичного состава, который назвали КонФлексПаве.

Свою разработку они собираются использовать для создания покрытий на дорогах.

Данная смесь по прочности не хуже металлических изделий, эластичность превышает в два раза по сравнению с обычными растворами из цемента.

Главные плюсы такой новой разработки:

  1. Из-за маленького веса материала, уменьшается нагрузка на основную конструкцию.
  2. Нужно использовать мало рабочей силы и будет затрачено меньше времени на выполнение работ.
  3. Дешевое техническое обслуживание.
  4. Высокий уровень устойчивости к износу.
  5. Высокий уровень гибкости.
  6. Не скользит.
  7. Не нужно использовать громадную арматуру.

Ученые сделали новые разработки во время исследования того, как между собой взаимодействуют компоненты на микроуровне. В составе такого материала есть микро волокно полимера и минерал с высокой твердостью.

Также в растворе есть определенные искусственные части, которые дают возможность покрытию быть эластичным изгибаться под сильным давлением.

Тонкие волокна одинаково делят нагрузку по всему основанию, а вот твердые компоненты дают такую структуру покрытия, на которой нет скольжения благодаря шероховатостям.

Какой бетон нужен сегодня


Бетон, нуждающийся в ремонте

Не смотря на свою запредельную прочность, бетон подвержен появлению трещин. Через них влага беспрепятственно попадает внутрь несокрушимого бетонного тела, вызывая коррозию арматуры, потихоньку съедая и саму прочность бетона. Со временем, он превращается в хрупкий материал, который просто выкрашивается из общей конструкции.

На начальном этапе разрушения железобетонных конструкций, этот процесс можно остановить, произведя его «грамотный» ремонт, на что уходят большие трудовые и денежные ресурсы. К тому же не всегда можно вовремя заметить такие микро−разрушения. Зачастую становится поздно производить какие−либо работы.

Разве с этим можно что−то сделать? Задавшись этим вопросом, голландский ученый Хенк Джонкерс нашел на него ответ, даря вечную жизнь бетону. Проведя три года в упорных трудах, он использовал природную силу регенерации и просто «вживил» ее в бетон, придавая ему функции самовосстановления.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: